Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.319
Filtrar
1.
FEBS Lett ; 598(8): 889-901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563123

RESUMO

BeKm-1 is a peptide toxin from scorpion venom that blocks the pore of the potassium channel hERG (Kv11.1) in the human heart. Although individual protein structures have been resolved, the structure of the complex between hERG and BeKm-1 is unknown. Here, we used molecular dynamics and ensemble docking, guided by previous double-mutant cycle analysis data, to obtain an in silico model of the hERG-BeKm-1 complex. Adding to the previous mutagenesis study of BeKm-1, our model uncovers the key role of residue Arg20, which forms three interactions (a salt bridge and hydrogen bonds) with the channel vestibule simultaneously. Replacement of this residue even by lysine weakens the interactions significantly. In accordance, the recombinantly produced BeKm-1R20K mutant exhibited dramatically decreased activity on hERG. Our model may be useful for future drug design attempts.


Assuntos
Arginina , Canal de Potássio ERG1 , Simulação de Dinâmica Molecular , Venenos de Escorpião , Venenos de Escorpião/química , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Humanos , Arginina/química , Arginina/metabolismo , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/química , Simulação de Acoplamento Molecular , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/metabolismo , Células HEK293 , Animais , Mutação
2.
J Am Chem Soc ; 146(12): 8394-8406, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477601

RESUMO

Aggregation refers to the assembly of proteins into nonphysiological higher order structures. While amyloid has been studied extensively, much less is known about amorphous aggregation, a process that interferes with protein expression and storage. Free arginine (Arg+) is a widely used aggregation inhibitor, but its mechanism remains elusive. Focusing on myoglobin (Mb), we recently applied atomistic molecular dynamics (MD) simulations for gaining detailed insights into amorphous aggregation (Ng J. Phys. Chem. B 2021, 125, 13099). Building on that approach, the current work for the first time demonstrates that MD simulations can directly elucidate aggregation inhibition mechanisms. Comparative simulations with and without Arg+ reproduced the experimental finding that Arg+ significantly decreased the Mb aggregation propensity. Our data reveal that, without Arg+, protein-protein encounter complexes readily form salt bridges and hydrophobic contacts, culminating in firmly linked dimeric aggregation nuclei. Arg+ promotes the dissociation of encounter complexes. These "unproductive" encounter complexes are favored because Arg+ binding to D- and E- lowers the tendency of these anionic residues to form interprotein salt bridges. Side chain blockage is mediated largely by the guanidinium group of Arg+, which binds carboxylates through H-bond-reinforced ionic contacts. Our MD data revealed Arg+ self-association into a dynamic quasi-infinite network, but we found no evidence that this self-association is important for protein aggregation inhibition. Instead, aggregation inhibition by Arg+ is similar to that mediated by free guanidinium ions. The computational strategy used here should be suitable for the rational design of aggregation inhibitors with enhanced potency.


Assuntos
Arginina , Agregados Proteicos , Arginina/química , Guanidina , Simulação de Dinâmica Molecular , Amiloide
3.
J Clin Lab Anal ; 38(7): e25030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525916

RESUMO

BACKGROUND: The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS: Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS: We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS: The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.


Assuntos
Arginina , Dineínas do Citoplasma , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , Metilação , Arginina/metabolismo , Arginina/química , Humanos , Dineínas do Citoplasma/metabolismo , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/química , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Processamento de Proteína Pós-Traducional , Dineínas/metabolismo , Dineínas/genética , Dineínas/química , Sequência de Aminoácidos
4.
ACS Appl Mater Interfaces ; 16(9): 11159-11171, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385360

RESUMO

For the improved delivery of cancer therapeutics and imaging agents, the conjugation of cell-penetrating peptides (CPPs) increases the cellular uptake and water solubility of agents. Among the various CPPs, arginine-rich peptides have been the most widely used. Combining CPPs with enzyme-responsive peptides presents an innovative strategy to target specific intracellular enzymes in cancer cells and when combined with the appropriate click chemistry can enhance theranostic drug delivery through the formation of intracellular self-assembled nanostructures. However, one drawback of CPPs is their high positive charge which can cause nonspecific binding, leading to off-target accumulation and potential toxicity. Hence, balancing cell-specific penetration, toxicity, and biocompatibility is essential for future clinical efficacy. We synthesized six cancer-specific, legumain-responsive RnAANCK peptides containing one to six arginine residues, with legumain being an asparaginyl endopeptidase that is overexpressed in aggressive prostate tumors. When conjugated to Alexa Fluor 488, R1-R6AANCK peptides exhibited a concentration- and time-dependent cell penetration in prostate cancer cells, which was higher for peptides with higher R values, reaching a plateau after approximately 120 min. Highly aggressive DU145 prostate tumor cells, but not less aggressive LNCaP cells, self-assembled nanoparticles in the cytosol after the cleavage of the legumain-specific peptide. The in vivo biocompatibility was assessed in mice after the intravenous injection of R1-R6AANCK peptides, with concentrations ranging from 0.0125 to 0.4 mmol/kg. The higher arginine content in R4-6 peptides showed blood and urine indicators for the impairment of bone marrow, liver, and kidney function in a dose-dependent manner, with instant hemolysis and morbidity in extreme cases. These findings underscore the importance of designing peptides with the optimal arginine residue length for a proper balance of cell-specific penetration, toxicity, and in vivo biocompatibility.


Assuntos
Peptídeos Penetradores de Células , Neoplasias , Animais , Camundongos , Arginina/química , Peptídeos Penetradores de Células/química , Neoplasias/tratamento farmacológico
5.
Food Chem ; 446: 138809, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402768

RESUMO

This study investigated the individual and combined effects of l-arginine, l-lysine, and NaCl on the ultrastructure of porcine myofibrils to uncover the mechanism underlying meat tenderization. Arg or Lys alone shortened A-bands and damaged M-lines, while NaCl alone destroyed M- and Z-lines. Overall, Arg and Lys cooperated with NaCl to destroy the myofibrillar ultrastructure. Moreover, these two amino acids conjoined with NaCl to increase myosin solubility, actin band intensity, and the protein concentration of the actomyosin supernatant. However, they decreased the turbidity and particle size of both myosin and actomyosin solutions, and the remaining activities of Ca2+- and Mg2+-ATPase. The current results revealed that Arg/Lys combined with NaCl to extract myosin and dissociate actomyosin, thereby aggravating the destruction of the myofibrillar ultrastructure. The present results provide a good explanation for the previous phenomenon that Arg and Lys cooperated with NaCl to improve meat tenderness.


Assuntos
Actomiosina , Lisina , Animais , Suínos , Actomiosina/química , Lisina/química , Cloreto de Sódio/química , Miosinas/química , Carne/análise , Actinas/metabolismo , Arginina/química , Suplementos Nutricionais
6.
J Phys Chem B ; 128(10): 2347-2359, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38416758

RESUMO

Liquid-liquid phase separation mediated by proteins and/or nucleic acids is believed to underlie the formation of many distinct condensed phases, or membraneless organelles, within living cells. These condensates have been proposed to orchestrate a variety of important processes. Despite recent advances, the interactions that regulate the dynamics of molecules within a condensate remain poorly understood. We performed accumulated 564.7 µs all-atom molecular dynamics (MD) simulations (system size ∼200k atoms) of model condensates formed by a scaffold RNA oligomer and a scaffold peptide rich in arginine (Arg). These model condensates contained one of three possible guest peptides: the scaffold peptide itself or a variant in which six Arg residues were replaced by lysine (Lys) or asymmetric dimethyl arginine (ADMA). We found that the Arg-rich peptide can form the largest number of hydrogen bonds and bind the strongest to the scaffold RNA in the condensate, relative to the Lys- and ADMA-rich peptides. Our MD simulations also showed that the Arg-rich peptide diffused more slowly in the condensate relative to the other two guest peptides, which is consistent with a recent fluorescence microscopy study. There was no significant increase in the number of cation-π interactions between the Arg-rich peptide and the scaffold RNA compared to the Lys-rich and ADMA-rich peptides. Our results indicate that hydrogen bonds between the peptides and the RNA backbone, rather than cation-π interactions, play a major role in regulating peptide diffusion in the condensate.


Assuntos
Simulação de Dinâmica Molecular , RNA , Ligação de Hidrogênio , Peptídeos/química , Proteínas , Arginina/química , Lisina/química , Cátions
7.
Int J Pharm ; 654: 123938, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38408554

RESUMO

The stability of lactate dehydrogenase (LDH) and ß-galactosidase (ß-gal), incorporated in arginine/pullulan (A/P) mixtures at various weight ratios by lyophilization, was determined. The physicochemical characteristics of various A/P mixtures were assessed. With decreasing A/P ratios, the glass transition temperature of the formulations increased. Furthermore, arginine crystallization due to high relative humidity (RH) exposure was prevented at an A/P weight ratio of 4/6 or less. When stored at 0 % RH / 60 °C for 4 weeks, arginine was superior to pullulan as stabilizer. During storage at 43 % RH / 30 ℃ for 4 weeks, the enzymatic activity of LDH was best retained at an A/P weight ratio of 2/8, while ß-gal activity was relatively well-retained at A/P weight ratios of both 8/2 and 2/8. LDH seemed to be more prone to degradation in the rubbery state. In the glassy state, ß-gal degraded faster than LDH. Solid-state nuclear magnetic resonance spectroscopy showed that (labeled) arginine experienced a different interaction in the two protein samples, reflecting a modulation of long-range correlations of the arginine side chain nitrogen atoms (Nε, Nη). In summary, LDH stabilization in the A/P matrix requires vitrification. Further stabilization difference between LDH and ß-gal may be dependent on the interaction with arginine.


Assuntos
Arginina , Proteínas , Arginina/química , Proteínas/química , Glucanos , L-Lactato Desidrogenase/química , Liofilização/métodos , Estabilidade de Medicamentos
8.
Nucleic Acids Res ; 52(7): 3989-4001, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38340338

RESUMO

Protein-protein and protein-rRNA interactions at the interface between ribosomal proteins uS4 and uS5 are thought to maintain the accuracy of protein synthesis by increasing selection of cognate aminoacyl-tRNAs. Selection involves a major conformational change-domain closure-that stabilizes aminoacyl-tRNA in the ribosomal acceptor (A) site. This has been thought a constitutive function of the ribosome ensuring consistent accuracy. Recently, the Saccharomyces cerevisiae Ctk1 cyclin-dependent kinase was demonstrated to ensure translational accuracy and Ser238 of uS5 proposed as its target. Surprisingly, Ser238 is outside the uS4-uS5 interface and no obvious mechanism has been proposed to explain its role. We show that the true target of Ctk1 regulation is another uS5 residue, Ser176, which lies in the interface opposite to Arg57 of uS4. Based on site specific mutagenesis, we propose that phospho-Ser176 forms a salt bridge with Arg57, which should increase selectivity by strengthening the interface. Genetic data show that Ctk1 regulates accuracy indirectly; the data suggest that the kinase Ypk2 directly phosphorylates Ser176. A second kinase pathway involving TORC1 and Pkc1 can inhibit this effect. The level of accuracy appears to depend on competitive action of these two pathways to regulate the level of Ser176 phosphorylation.


Assuntos
Arginina , Fosfosserina , Biossíntese de Proteínas , Proteínas Quinases , Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Arginina/metabolismo , Arginina/química , Fosfosserina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Fosforilação , Evolução Molecular
9.
Adv Sci (Weinh) ; 11(16): e2308493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380492

RESUMO

Supramolecular chirality-mediated selective interaction among native assemblies is essential for precise disease diagnosis and treatment. Herein, to fully understand the supramolecular chiral binding affinity-achieved therapeutic efficiency, supramolecular chiral nanoparticles (WP5⊃D/L-Arg+DOX+ICG) with the chirality transfer from chiral arginine (D/L-Arg) to water-soluble pillar[5]arene (WP5) are developed through non-covalent interactions, in which an anticancer drug (DOX, doxorubicin hydrochloride) and a photothermal agent (ICG, indocyanine green) are successfully loaded. Interestingly, the WP5⊃D-Arg nanoparticles show 107 folds stronger binding capability toward phospholipid-composed liposomes compared with WP5⊃L-Arg. The enantioselective interaction further triggers the supramolecular chirality-specific drug accumulation in cancer cells. As a consequence, WP5⊃D-Arg+DOX+ICG exhibits extremely enhanced chemo-photothermal synergistic therapeutic efficacy (tumor inhibition rate of 99.4%) than that of WP5⊃L-Arg+DOX+ICG (tumor inhibition rate of 56.4%) under the same condition. This work reveals the breakthrough that supramolecular chiral assemblies can induce surprisingly large difference in cancer therapy, providing strong support for the significance of supramolecular chirality in bio-application.


Assuntos
Antineoplásicos , Doxorrubicina , Verde de Indocianina , Nanopartículas , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Verde de Indocianina/química , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Arginina/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Compostos de Amônio Quaternário/química , Calixarenos/química , Estereoisomerismo
10.
J Photochem Photobiol B ; 252: 112867, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368636

RESUMO

Arginine methylation (ArgMet), as a post-translational modification, plays crucial roles in RNA processing, transcriptional regulation, signal transduction, DNA repair, apoptosis and liquid-liquid phase separation (LLPS). Since arginine methylation is associated with cancer pathogenesis and progression, protein arginine methyltransferases have gained interest as targets for anti-cancer therapy. Despite considerable process made to elucidate (patho)physiological mechanisms regulated by arginine methylation, there remains a lack of tools to visualize arginine methylation with high spatiotemporal resolution in live cells. To address this unmet need, we generated an ArgMet-sensitive genetically encoded, Förster resonance energy transfer-(FRET) based biosensor, called GEMS, capable of quantitative real-time monitoring of ArgMet dynamics. We optimized these biosensors by using different ArgMet-binding domains, arginine-glycine-rich regions and adjusting the linkers within the biosensors to improve their performance. Using a set of mammalian cell lines and modulators, we demonstrated the applicability of GEMS for monitoring changes in arginine methylation with single-cell and temporal resolution. The GEMS can facilitate the in vitro screening to find potential protein arginine methyltransferase inhibitors and will contribute to a better understanding of the regulation of ArgMet related to differentiation, development and disease.


Assuntos
Arginina , Transferência Ressonante de Energia de Fluorescência , Animais , Arginina/química , Metilação , Regulação da Expressão Gênica , Corantes , Processamento de Proteína Pós-Traducional , Mamíferos/metabolismo
11.
Biochem Biophys Res Commun ; 704: 149700, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401304

RESUMO

Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.


Assuntos
Antifúngicos , Triptofano , Camundongos , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Triptofano/química , Lisina/química , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Aminoácidos/farmacologia , Candida albicans , Arginina/química , Testes de Sensibilidade Microbiana
12.
Chembiochem ; 25(6): e202300834, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38284327

RESUMO

Leveraging liposomes for drug and nucleic acid delivery, though promising due to reduced toxicity and ease of preparation, faces challenges in stability and efficiency. To address this, we synthesized cationic amphiphiles from amino acids (arginine, lysine, and histidine). Histidine emerged as the superior candidate, leading to the development of three histidine-rich cationic amphiphiles for liposomes. Using the hydration method, we have prepared the liposomes and determined the optimal N/P ratios for lipoplex formation via gel electrophoresis. In vitro transfection assays compared the efficacy of our lipids to Fugene, while MTT assays gauged biocompatibility across cancer cell lines (MDA-MB 231 and MCF-7). The histidine-based lipid demonstrated marked potential in enhancing drug and nucleic acid delivery. This improvement stemmed from increased zeta potential, enhancing electrostatic interactions with nucleic acids and cellular uptake. Our findings underscore histidine's crucial role over lysine and arginine for effective delivery, revealing a significant correlation between histidine abundance and optimal performance. This study paves the way for histidine-enriched lipids as promising candidates for efficient drug and nucleic acid delivery, addressing key challenges in the field.


Assuntos
Lipossomos , Ácidos Nucleicos , Lipossomos/química , Aminoácidos , Histidina/química , Lisina/química , Transfecção , Arginina/química , Lipídeos/química , Cátions/química
13.
Int J Biol Macromol ; 257(Pt 1): 128646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061507

RESUMO

Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.


Assuntos
Arginina , Peptídeos Penetradores de Células , Arginina/química , Histonas/metabolismo , DNA/química , Peptídeos Penetradores de Células/metabolismo , Citrulina
14.
AAPS PharmSciTech ; 24(8): 253, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062314

RESUMO

Low aqueous solubility of drug candidates is an ongoing challenge and pharmaceutical manufacturers pay close attention to amorphization (AMORP) technology to improve the solubility of drugs that dissolve poorly. Amorphous drug typically exhibits much higher apparent solubility than their crystalline form due to high energy state that enable them to produce a supersaturated state in the gastrointestinal tract and thereby improve bioavailability. The stability and augmented solubility in co-amorphous (COA) formulations is influenced by molecular interactions. COA are excellent carriers-based drug delivery systems for biopharmaceutical classification system (BCS) class II and class IV drugs. The three important critical quality attributes, such as co-formability, physical stability, and dissolution performance, are necessary to illustrate the COA systems. New amorphous-stabilized carriers-based fabrication techniques that improve drug loading and degree of AMORP have been the focus of emerging AMORP technology. Numerous low-molecular-weight compounds, particularly amino acids such as glutamic acid, arginine, isoleucine, leucine, valine, alanine, glycine, etc., have been employed as potential co-formers. The review focus on the prevailing drug AMORP strategies used in pharmaceutical research, including in situ AMORP, COA systems, and mesoporous particle-based methods. Moreover, brief characterization techniques and the application of the different amino acids in stabilization and solubility improvements have been related.


Assuntos
Aminoácidos , Arginina , Aminoácidos/química , Preparações Farmacêuticas/química , Estabilidade de Medicamentos , Composição de Medicamentos/métodos , Arginina/química , Solubilidade
15.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067510

RESUMO

Arginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs.


Assuntos
Arginina , Técnicas de Síntese em Fase Sólida , Arginina/química , Peptídeos/química , Guanidinas
16.
Chem Res Toxicol ; 36(11): 1768-1777, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37888804

RESUMO

Methylglyoxal (MGO) and glyoxal (GO) are toxic α-dicarbonyl compounds that undergo reactions with amine containing molecules such as proteins and amino acids and result in the formation of advanced glycation end products (AGEs). This study aimed at investigating the reactivity of arginine (Arg) or dimethylarginine (SDMA or ADMA) with MGO or GO. The solutions of arginine and MGO or GO were prepared in PBS buffer (pH 7.4) and incubated at 37 °C. Direct electrospray ionization-high-resolution mass spectrometry (ESI-HRMS) analysis of the reaction mixture of Arg and MGO revealed the formation of Arg-MGO (1:1) and Arg-2MGO (1:2) products and their corresponding dehydrated products. Further liquid chromatography (LC)-MS analyses revealed the presence of isomeric products in each 1:1 and 1:2 product. The [M + H]+ of each isomeric product was subjected to MS/MS experiments for structural elucidation. The MS/MS spectra of some of the products showed a distinct structure indicative fragment ions, while others showed similar data. The types of products formed by the arginines with GO were also found to be similar to that of MGO. The importance of the guanidine group in the formation of the AGEs was reflected in similar incubation experiments with ADMA and SDMA. The structures of the products were proposed based on the comparison of the retention times and HRMS and MS/MS data interpretation, and some of them were confirmed by drawing analogy to the data reported in the literature.


Assuntos
Glioxal , Aldeído Pirúvico , Glioxal/química , Aldeído Pirúvico/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Óxido de Magnésio , Produtos Finais de Glicação Avançada/análise , Arginina/química
17.
Int J Pharm ; 647: 123545, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37871869

RESUMO

Arginine and its derivatives (such as arginine ethyl ester and acetyl arginine) have varying degrees of protein aggregation suppressor effect across different protein solutions. To understand this performance ambiguity, we evaluated the activity of arginine, acetyl arginine, and arginine ethyl ester for aggregation suppressor effect against human intravenous immunoglobulin G (IgG) solution at pH 4.8. Both arginine and its cationic derivative arginine ethyl ester in their hydrochloride salt forms significantly reduced the colloidal and conformational stability (reduced kd and Tm) of IgG. Consequently, the monomer content was decreased with an increase in subvisible particulates after agitation or thermal stress. Furthermore, compared to arginine, arginine ethyl ester with one more cationic charge and hydrochloride salt form readily precipitated IgG at temperatures higher than 25 °C. On the contrary, acetyl arginine, which mostly exists in a neutral state at pH 4.8, efficiently suppressed the formation of subvisible particles retaining a high amount of monomer owing to its higher colloidal and conformational stability. Concisely, the charged state of additives significantly impacts protein stability. This study demonstrated that contrary to popular belief, arginine and its derivatives may either enhance or suppress protein aggregation depending on their net charge and concentration.


Assuntos
Imunoglobulina G , Agregados Proteicos , Humanos , Imunoglobulina G/química , Temperatura , Estabilidade Proteica , Arginina/química
18.
BMC Bioinformatics ; 24(1): 376, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794362

RESUMO

BACKGROUND: Protein methylation, a post-translational modification, is crucial in regulating various cellular functions. Arginine methylation is required to understand crucial biochemical activities and biological functions, like gene regulation, signal transduction, etc. However, some experimental methods, including Chip-Chip, mass spectrometry, and methylation-specific antibodies, exist for the prediction of methylated proteins. These experimental methods are expensive and tedious. As a result, computational methods based on machine learning play an efficient role in predicting arginine methylation sites. RESULTS: In this research, a novel method called PRMxAI has been proposed to predict arginine methylation sites. The proposed PRMxAI extract sequence-based features, such as dipeptide composition, physicochemical properties, amino acid composition, and information theory-based features (Arimoto, Havrda-Charvat, Renyi, and Shannon entropy), to represent the protein sequences into numerical format. Various machine learning algorithms are implemented to select the better classifier, such as Decision trees, Naive Bayes, Random Forest, Support vector machines, and K-nearest neighbors. The random forest algorithm is selected as the underlying classifier for the PRMxAI model. The performance of PRMxAI is evaluated by employing 10-fold cross-validation, and it yields 87.17% and 90.40% accuracy on mono-methylarginine and di-methylarginine data sets, respectively. This research also examines the impact of various features on both data sets using explainable artificial intelligence. CONCLUSIONS: The proposed PRMxAI shows the effectiveness of the features for predicting arginine methylation sites. Additionally, the SHapley Additive exPlanation method is used to interpret the predictive mechanism of the proposed model. The results indicate that the proposed PRMxAI model outperforms other state-of-the-art predictors.


Assuntos
Aminoácidos , Arginina , Aminoácidos/metabolismo , Arginina/química , Arginina/metabolismo , Metilação , Inteligência Artificial , Teorema de Bayes , Processamento de Proteína Pós-Traducional , Algoritmos
19.
Eur J Pharm Biopharm ; 191: 189-204, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666365

RESUMO

Today, macromolecular compounds such as microRNAs (miRNAs) are becoming more and more widespread as leading therapeutics. However, their application is limited mostly due to their poor stability, limited cellular uptake, and poor target specificity. Cell-penetrating peptides (CPPs), a group of positively charged peptides, represent a breakthrough as delivery systems for macromolecules. In the present study, we used two types of nanoparticles which differ in the type of CPP used for their manufacturing. The first type is composed of protamine, an arginine rich CPP, which is highly positively charged. The arginine residues are able to form electrostatic interactions with miRNAs, stabilize them, and deliver them to cells. The second type is composed of the N-Ter peptide (also known as MPG), an amphipathic peptide rich in lysine. The positively charged parts of the N-Ter peptide electrostatically stabilize miRNAs, whereas its amphipathic character allows it to successfully traverse cell membranes. We used miRNA-27a, a negative regulator of adipogenesis, to form nanoparticles with the peptides and traced their uptake in 3T3-L1 preadipocytes. Motivated by the lengthy discourse regarding the uptake mechanism of CPPs, the focus of our study was to analyse and understand the internalization of proticles (protamine nanoparticles) and N-Ter complexes. The nanoparticles were characterized regarding size, size distribution, and zeta potential, and their cytotoxicity was tested in 3T3-L1 cells. The uptake studies were performed by varying the experimental conditions such as time, concentration, and temperature, as well as by applying different inhibitors of endocytosis. Furthermore, we assessed the biological effect of miRNA-27a on the pro-adipogenic machinery. The obtained data have shown that protamine and the N-Ter peptide form positively charged nanoparticles through non-covalent complexation. The uptake of proticles and N-Ter complexes was found to be dependent on time, concentration, and temperature, and different uptake pathways were discovered to be involved in the internalization of the different nanoparticles. Furthermore, both types of nanoparticles induced the anti-adipogenic effect of miRNA-27a, demonstrating that this approach can be used as a novel miRNA replacement therapy in the treatment of obesity and obesity-related disorders.


Assuntos
Peptídeos Penetradores de Células , MicroRNAs , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Endocitose , Protaminas , Arginina/química
20.
PeerJ ; 11: e16103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744237

RESUMO

Background: Serine/arginine-rich (SR) proteins regulate pre-mRNA splicing. However, structurally similar proteins often behave differently in splicing regulation and the underlying mechanisms are largely unknown. Here, using SMN1/2 minigenes we extensively analyzed four SR proteins, SRSF1/5/6/9. Methods: In this study, the effects of these proteins on SMN1/2 exon 7 splicing when tethered at either intron 6 or 7 were evaluated using an MS2-tethering assay. Deletion analysis in four SR proteins and co-overexpression analysis were performed. Results: Splicing outcomes varied among all four SR proteins, SRSF1 and SRSF5 function the same at the two sites, acting as repressor and stimulator, respectively; while SRSF6 and SRSF9 promote exon 7 inclusion at only one site. Further, the key domains of each SR proteins were investigated, which identified a potent inhibitory nonapeptide in the C-terminus of SRSF1/9 ribonucleic acid recognition motif-1 (RRM1) and a potent stimulatory heptapeptide at the N-terminus of SRSF5/6 RRM1. Conclusion: The insight of the four SR proteins and their domains in affecting SMN gene splicing brings a new perspective on the modes of action of SR proteins; and the functional peptides obtained here offers new ideas for developing splice switching-related therapies.


Assuntos
RNA , Serina , RNA/metabolismo , Serina/química , Splicing de RNA/genética , Proteínas/metabolismo , Peptídeos/metabolismo , Arginina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA